Unwinding and rewinding the nucleosome inner turn: force dependence of the kinetic rate constants.
نویسندگان
چکیده
A simple model for the force-dependent unwinding and rewinding rates of the nucleosome inner turn is constructed and quantitatively compared to the results of recent measurements [A. H. Mack et al., J. Mol. Biol. 423, 687 (2012)]. First, a coarse-grained model for the histone-DNA free-energy landscape that incorporates both an elastic free-energy barrier and specific histone-DNA bonds is developed. Next, a theoretical expression for the rate of transitions across a piecewise linear free-energy landscape with multiple minima and maxima is presented. Then, the model free-energy landscape, approximated as a piecewise linear function, and the theoretical expression for the transition rates are combined to construct a model for the force-dependent unwinding and rewinding rates of the nucleosome inner turn. Least-mean-squares fitting of the model rates to the rates observed in recent experiments rates demonstrates that this model is able to well describe the force-dependent unwinding and rewinding rates of the nucleosome inner turn, observed in the recent experiments, except at the highest forces studied, where an additional ad hoc term is required to describe the data, which may be interpreted as an indication of an alternate high-force nucleosome disassembly pathway, that bypasses simple unwinding. The good agreement between the measurements and the model at lower forces demonstrates that both specific histone-DNA contacts and an elastic free-energy barrier play essential roles for nucleosome winding and unwinding, and quantifies their relative contributions.
منابع مشابه
Kinetics and thermodynamics of phenotype: unwinding and rewinding the nucleosome.
Chromatin "remodeling" is widely accepted as the mechanism that permits access to DNA by the transcription machinery. To date, however, there has been no experimental measurement of the changes in the kinetics and thermodynamics of the DNA-histone octamer association that are required to remodel chromatin so that transcription may occur. Here, we present the results of optical tweezer measureme...
متن کاملRoutes to DNA accessibility: alternative pathways for nucleosome unwinding.
The dynamic packaging of DNA into chromatin is a key determinant of eukaryotic gene regulation and epigenetic inheritance. Nucleosomes are the basic unit of chromatin, and therefore the accessible states of the nucleosome must be the starting point for mechanistic models regarding these essential processes. Although the existence of different unwound nucleosome states has been hypothesized, the...
متن کاملEffect of Induced Dipole-Induced Dipole Potential and the Size of Colliding Particles on Ion-Quadrupolar Molecule Collision Rate Constants
Classical trajectory (Monte Carlo) calculation is used to calculate collision rate constants of ion-quadrupolar molecule interactions for the H¯+C2H2 system. The method presented here takes into account the effect of the induced dipole-induced dipole potential on ion-quadrupolar molecule collision rate constants. It is also assumed that the colliding particles have a d...
متن کاملTorsional regulation of hRPA-induced unwinding of double-stranded DNA
All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the dynamics of human RPA (hRPA) activity on topologically constrained dsDNA with single-molecule magnetic t...
متن کاملThe molecular yo-yo method: live jump detection improves throughput of single-molecule force spectroscopy for out-of-equilibrium transitions.
By monitoring multiple molecular transitions, force-clamp, and trap-position-clamp methods have led to precise determinations of the free energies and free energy landscapes for molecular states populated in equilibrium at the same or similar forces. Here, we present a powerful new elaboration of the force-clamp and force-jump methods, applicable to transitions far from equilibrium. Specificall...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 87 1 شماره
صفحات -
تاریخ انتشار 2013